高考數學(xué)易丟分的33個(gè)知識點(diǎn)匯總
來(lái)源:網(wǎng)絡(luò )資源 2023-04-26 10:27:27
1.遺忘空集
由于空集是任何非空集合的真子集,因此B=?時(shí)也滿(mǎn)足B?A。解含有參數的集合問(wèn)題時(shí),要特別注意當參數在某個(gè)范圍內取值時(shí)所給的集合可能是空集這種情況。
2.忽視集合元素的三性
集合中的元素具有確定性、無(wú)序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數的集合,實(shí)際上就隱含著(zhù)對字母參數的一些要求。
3.混淆命題的否定與否命題
命題的“否定”與命題的“否命題”是兩個(gè)不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結論。
4.充分條件、必要條件顛倒
對于兩個(gè)條件A,B,如果A?B成立,則A是B的充分條件,B是A的必要條件;如果B?A成立,則A是B的必要條件,B是A的充分條件;如果A?B,則A,B互為充分必要條件。解題時(shí)最容易出錯的就是顛倒了充分性與必要性,所以在解決這類(lèi)問(wèn)題時(shí)一定要根據充分條件和必要條件的概念作出準確的判斷。
5.“或”“且”“非”理解不準
命題p∨q真?p真或q真,命題p∨q假?p假且q假(概括為一真即真);命題p∧q真?p真且q真,命題p∧q假?p假或q假(概括為一假即假);綈p真?p假,綈p假?p真(概括為一真一假)。求參數取值范圍的題目,也可以把“或”“且”“非”與集合的“并”“交”“補”對應起來(lái)進(jìn)行理解,通過(guò)集合的運算求解。
6.函數的單調區間理解不準
在研究函數問(wèn)題時(shí)要時(shí)時(shí)刻刻想到“函數的圖像”,學(xué)會(huì )從函數圖像上去分析問(wèn)題、尋找解決問(wèn)題的方法。對于函數的幾個(gè)不同的單調遞增(減)區間,切忌使用并集,只要指明這幾個(gè)區間是該函數的單調遞增(減)區間即可。
7.判斷函數奇偶性忽略定義域
判斷函數的奇偶性,首先要考慮函數的定義域,一個(gè)函數具備奇偶性的必要條件是這個(gè)函數的定義域關(guān)于原點(diǎn)對稱(chēng),如果不具備這個(gè)條件,函數一定是非奇非偶函數。
8.函數零點(diǎn)定理使用不當
如果函數y=f(x)在區間[a,b]上的圖像是一條連續的曲線(xiàn),并且有f(a)f(b)<0,那么,函數y=f(x)在區間(a,b)內有零點(diǎn),但f(a)f(b)>0時(shí),不能否定函數y=f(x)在(a,b)內有零點(diǎn)。函數的零點(diǎn)有“變號零點(diǎn)”和“不變號零點(diǎn)”,對于“不變號零點(diǎn)”函數的零點(diǎn)定理是“無(wú)能為力”的,在解決函數的零點(diǎn)問(wèn)題時(shí)要注意這個(gè)問(wèn)題。
9.三角函數的單調性判斷
對于函數y=Asin(ωx+φ)的單調性,當ω>0時(shí),由于內層函數u=ωx+φ是單調遞增的,所以該函數的單調性和y=sinx的單調性相同,故可完全按照函數y=sinx的單調區間解決;但當ω<0時(shí),內層函數u=ωx+φ是單調遞減的,此時(shí)該函數的單調性和函數y=sinx的單調性相反,就不能再按照函數y=sinx的單調性解決,一般是根據三角函數的奇偶性將內層函數的系數變?yōu)檎龜岛笤偌右越鉀Q。對于帶有絕對值的三角函數應該根據圖像,從直觀(guān)上進(jìn)行判斷。
10.忽視零向量
零向量是向量中最特殊的向量,規定零向量的長(cháng)度為0,其方向是任意的,零向量與任意向量都共線(xiàn)。它在向量中的位置正如實(shí)數中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會(huì )出錯,考生應給予足夠的重視。
11.向量夾角范圍不清
解題時(shí)要全面考慮問(wèn)題。數學(xué)試題中往往隱含著(zhù)一些容易被考生所忽視的因素,能不能在解題時(shí)把這些因素考慮到,是解題成功的關(guān)鍵,如當a·b<0時(shí),a與b的夾角不一定為鈍角,要注意θ=π的情況。
12.an與Sn關(guān)系不清
在數列問(wèn)題中,數列的通項an與其前n項和Sn之間存在下列關(guān)系:an=S1,n=1,Sn-Sn-1,n≥2。這個(gè)關(guān)系對任意數列都是成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n≥2時(shí)這個(gè)關(guān)系式具有完全不同的表現形式,這也是解題中經(jīng)常出錯的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其“分段”的特點(diǎn)。
13.對數列的定義、性質(zhì)理解錯誤
等差數列的前n項和在公差不為零時(shí)是關(guān)于n的常數項為零的二次函數;一般地,有結論“若數列{an}的前n項和Sn=an2+bn+c(a,b,c∈R),則數列{an}為等差數列的充要條件是c=0”;在等差數列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數列。
14.數列中的最值錯誤
數列問(wèn)題中其通項公式、前n項和公式都是關(guān)于正整數n的函數,要善于從函數的觀(guān)點(diǎn)認識和理解數列問(wèn)題。數列的通項an與前n項和Sn的關(guān)系是高考的命題重點(diǎn),解題時(shí)要注意把n=1和n≥2分開(kāi)討論,再看能不能統一。在關(guān)于正整數n的二次函數中其取最值的點(diǎn)要根據正整數距離二次函數的對稱(chēng)軸的遠近而定。
15.錯位相減求和項處理不當
錯位相減求和法的適用條件:數列是由一個(gè)等差數列和一個(gè)等比數列對應項的乘積所組成的,求其前n項和;痉椒ㄊ窃O這個(gè)和式為Sn,在這個(gè)和式兩端同時(shí)乘以等比數列的公比得到另一個(gè)和式,這兩個(gè)和式錯一位相減,就把問(wèn)題轉化為以求一個(gè)等比數列的前n項和或前n-1項和為主的求和問(wèn)題.這里最容易出現問(wèn)題的就是錯位相減后對剩余項的處理。
16.不等式性質(zhì)應用不當
在使用不等式的基本性質(zhì)進(jìn)行推理論證時(shí)一定要準確,特別是不等式兩端同時(shí)乘以或同時(shí)除以一個(gè)數式、兩個(gè)不等式相乘、一個(gè)不等式兩端同時(shí)n次方時(shí),一定要注意使其能夠這樣做的條件,如果忽視了不等式性質(zhì)成立的前提條件就會(huì )出現錯誤。
17.忽視基本不等式應用條件
利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數的最值時(shí),務(wù)必注意a,b為正數(或a,b非負),ab或a+b其中之一應是定值,特別要注意等號成立的條件。對形如y=ax+bx(a,b>0)的函數,在應用基本不等式求函數最值時(shí),一定要注意ax,bx的符號,必要時(shí)要進(jìn)行分類(lèi)討論,另外要注意自變量x的取值范圍,在此范圍內等號能否取到。
18.不等式恒成立問(wèn)題
解決不等式恒成立問(wèn)題的常規求法是:借助相應函數的單調性求解,其中的主要方法有數形結合法、變量分離法、主元法。通過(guò)最值產(chǎn)生結論。應注意恒成立與存在性問(wèn)題的區別,如對任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立問(wèn)題,但對存在x∈[a,b],使f(x)≤g(x)成立,則為存在性問(wèn)題,即f(x)min≤g(x)max,應特別注意兩函數中的最大值與最小值的關(guān)系。
19.忽視三視圖中的實(shí)、虛線(xiàn)
三視圖是根據正投影原理進(jìn)行繪制,嚴格按照“長(cháng)對正,高平齊,寬相等”的規則去畫(huà),若相鄰兩物體的表面相交,表面的交線(xiàn)是它們的原分界線(xiàn),且分界線(xiàn)和可視輪廓線(xiàn)都用實(shí)線(xiàn)畫(huà)出,不可見(jiàn)的輪廓線(xiàn)用虛線(xiàn)畫(huà)出,這一點(diǎn)很容易疏忽。
20.面積體積計算轉化不靈活
面積、體積的計算既需要學(xué)生有扎實(shí)的基礎知識,又要用到一些重要的思想方法,是高考考查的重要題型.因此要熟練掌握以下幾種常用的思想方法。(1)還臺為錐的思想:這是處理臺體時(shí)常用的思想方法。(2)割補法:求不規則圖形面積或幾何體體積時(shí)常用。(3)等積變換法:充分利用三棱錐的任意一個(gè)面都可作為底面的特點(diǎn),靈活求解三棱錐的體積。(4)截面法:尤其是關(guān)于旋轉體及與旋轉體有關(guān)的組合問(wèn)題,常畫(huà)出軸截面進(jìn)行分析求解。