高中數學(xué)必修2考點(diǎn)大全
來(lái)源:網(wǎng)絡(luò )整理 2020-02-26 21:14:05
1、柱、錐、臺、球的結構特征
(1)棱柱:
幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形.
(2)棱錐
幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方.
(3)棱臺:
幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點(diǎn)
(4)圓柱:定義:以矩形的一邊所在的直線(xiàn)為軸旋轉,其余三邊旋轉所成
幾何特征:①底面是全等的圓;②母線(xiàn)與軸平行;③軸與底面圓的半徑垂直;④側面展開(kāi)圖是一個(gè)矩形.
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成
幾何特征:①底面是一個(gè)圓;②母線(xiàn)交于圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)扇形.
(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成
幾何特征:①上下底面是兩個(gè)圓;②側面母線(xiàn)交于原圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)弓形.
(7)球體:定義:以半圓的直徑所在直線(xiàn)為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑.
2、空間幾何體的三視圖
定義三視圖:正視圖(光線(xiàn)從幾何體的前面向后面正投影);側視圖(從左向右)、
俯視圖(從上向下)
注:正視圖反映了物體的高度和長(cháng)度;俯視圖反映了物體的長(cháng)度和寬度;側視圖反映了物體的高度和寬度.
3、空間幾何體的直觀(guān)圖——斜二測畫(huà)法
斜二測畫(huà)法特點(diǎn):①原來(lái)與x軸平行的線(xiàn)段仍然與x平行且長(cháng)度不變;
、谠瓉(lái)與y軸平行的線(xiàn)段仍然與y平行,長(cháng)度為原來(lái)的一半.
4、柱體、錐體、臺體的表面積與體積
(1)幾何體的表面積為幾何體各個(gè)面的面積的和.
(2)特殊幾何體表面積公式(c為底面周長(cháng),h為高,為斜高,l為母線(xiàn))
(3)柱體、錐體、臺體的體積公式
直線(xiàn)與方程
(1)直線(xiàn)的傾斜角
定義:x軸正向與直線(xiàn)向上方向之間所成的角叫直線(xiàn)的傾斜角.特別地,當直線(xiàn)與x軸平行或重合時(shí),我們規定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°
(2)直線(xiàn)的斜率
、俣x:傾斜角不是90°的直線(xiàn),它的傾斜角的正切叫做這條直線(xiàn)的斜率.直線(xiàn)的斜率常用k表示.即.斜率反映直線(xiàn)與軸的傾斜程度.
當時(shí),;當時(shí),;當時(shí),不存在.
、谶^(guò)兩點(diǎn)的直線(xiàn)的斜率公式:
注意下面四點(diǎn):(1)當時(shí),公式右邊無(wú)意義,直線(xiàn)的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無(wú)關(guān);(3)以后求斜率可不通過(guò)傾斜角而由直線(xiàn)上兩點(diǎn)的坐標直接求得;
(4)求直線(xiàn)的傾斜角可由直線(xiàn)上兩點(diǎn)的坐標先求斜率得到.
(3)直線(xiàn)方程
、冱c(diǎn)斜式:直線(xiàn)斜率k,且過(guò)點(diǎn)
注意:當直線(xiàn)的斜率為0°時(shí),k=0,直線(xiàn)的方程是y=y1.
當直線(xiàn)的斜率為90°時(shí),直線(xiàn)的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標都等于x1,所以它的方程是x=x1.
、谛苯厥剑,直線(xiàn)斜率為k,直線(xiàn)在y軸上的截距為b
、蹆牲c(diǎn)式:()直線(xiàn)兩點(diǎn),
、芙鼐厥剑
其中直線(xiàn)與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為.
、菀话闶剑(A,B不全為0)
注意:各式的適用范圍特殊的方程如:
(4)平行于x軸的直線(xiàn):(b為常數);平行于y軸的直線(xiàn):(a為常數);
(5)直線(xiàn)系方程:即具有某一共同性質(zhì)的直線(xiàn)
(一)平行直線(xiàn)系
平行于已知直線(xiàn)(是不全為0的常數)的直線(xiàn)系:(C為常數)
(二)垂直直線(xiàn)系
垂直于已知直線(xiàn)(是不全為0的常數)的直線(xiàn)系:(C為常數)
(三)過(guò)定點(diǎn)的直線(xiàn)系
(ⅰ)斜率為k的直線(xiàn)系:,直線(xiàn)過(guò)定點(diǎn);
(ⅱ)過(guò)兩條直線(xiàn),的交點(diǎn)的直線(xiàn)系方程為
(為參數),其中直線(xiàn)不在直線(xiàn)系中.
(6)兩直線(xiàn)平行與垂直
注意:利用斜率判斷直線(xiàn)的平行與垂直時(shí),要注意斜率的存在與否.
(7)兩條直線(xiàn)的交點(diǎn)
相交
交點(diǎn)坐標即方程組的一組解.
方程組無(wú)解;方程組有無(wú)數解與重合
(8)兩點(diǎn)間距離公式:設是平面直角坐標系中的兩個(gè)點(diǎn)
(9)點(diǎn)到直線(xiàn)距離公式:一點(diǎn)到直線(xiàn)的距離
(10)兩平行直線(xiàn)距離公式
在任一直線(xiàn)上任取一點(diǎn),再轉化為點(diǎn)到直線(xiàn)的距離進(jìn)行求解.
圓的方程
1、圓的定義:平面內到一定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(cháng)為圓的半徑.
2、圓的方程
(1)標準方程,圓心,半徑為r;
(2)一般方程
當時(shí),方程表示圓,此時(shí)圓心為,半徑為
當時(shí),表示一個(gè)點(diǎn);當時(shí),方程不表示任何圖形.
(3)求圓方程的方法:
一般都采用待定系數法:先設后求.確定一個(gè)圓需要三個(gè)獨立條件,若利用圓的標準方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線(xiàn)必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置.
3、高中數學(xué)必修二知識點(diǎn)總結:直線(xiàn)與圓的位置關(guān)系:
直線(xiàn)與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設直線(xiàn),圓,圓心到l的距離為,則有;;
(2)過(guò)圓外一點(diǎn)的切線(xiàn):①k不存在,驗證是否成立②k存在,設點(diǎn)斜式方程,用圓心到該直線(xiàn)距離=半徑,求解k,得到方程【一定兩解】
(3)過(guò)圓上一點(diǎn)的切線(xiàn)方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線(xiàn)方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定.
設圓,
兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定.
當時(shí)兩圓外離,此時(shí)有公切線(xiàn)四條;
當時(shí)兩圓外切,連心線(xiàn)過(guò)切點(diǎn),有外公切線(xiàn)兩條,內公切線(xiàn)一條;
當時(shí)兩圓相交,連心線(xiàn)垂直平分公共弦,有兩條外公切線(xiàn);
當時(shí),兩圓內切,連心線(xiàn)經(jīng)過(guò)切點(diǎn),只有一條公切線(xiàn);
當時(shí),兩圓內含;當時(shí),為同心圓.
注意:已知圓上兩點(diǎn),圓心必在中垂線(xiàn)上;已知兩圓相切,兩圓心與切點(diǎn)共線(xiàn)
5、空間點(diǎn)、直線(xiàn)、平面的位置關(guān)系
公理1:如果一條直線(xiàn)的兩點(diǎn)在一個(gè)平面內,那么這條直線(xiàn)是所有的點(diǎn)都在這個(gè)平面內.
應用:判斷直線(xiàn)是否在平面內
用符號語(yǔ)言表示公理1:
公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)
符號:平面α和β相交,交線(xiàn)是a,記作α∩β=a.
符號語(yǔ)言:
公理2的作用:
、偎桥卸▋蓚(gè)平面相交的方法.
、谒f(shuō)明兩個(gè)平面的交線(xiàn)與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線(xiàn)必過(guò)公共點(diǎn).
、鬯梢耘袛帱c(diǎn)在直線(xiàn)上,即證若干個(gè)點(diǎn)共線(xiàn)的重要依據.
公理3:經(jīng)過(guò)不在同一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面.
推論:一直線(xiàn)和直線(xiàn)外一點(diǎn)確定一平面;兩相交直線(xiàn)確定一平面;兩平行直線(xiàn)確定一平面.
公理3及其推論作用:①它是空間內確定平面的依據②它是證明平面重合的依據
公理4:平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行
空間直線(xiàn)與直線(xiàn)之間的位置關(guān)系
、佼惷嬷本(xiàn)定義:不同在任何一個(gè)平面內的兩條直線(xiàn)
、诋惷嬷本(xiàn)性質(zhì):既不平行,又不相交.
、郛惷嬷本(xiàn)判定:過(guò)平面外一點(diǎn)與平面內一點(diǎn)的直線(xiàn)與平面內不過(guò)該店的直線(xiàn)是異面直線(xiàn)
、墚惷嬷本(xiàn)所成角:作平行,令兩線(xiàn)相交,所得銳角或直角,即所成角.兩條異面直線(xiàn)所成角的范圍是(0°,90°],若兩條異面直線(xiàn)所成的角是直角,我們就說(shuō)這兩條異面直線(xiàn)互相垂直.
求異面直線(xiàn)所成角步驟:
A、利用定義構造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來(lái)求角
(7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補.
(8)空間直線(xiàn)與平面之間的位置關(guān)系
直線(xiàn)在平面內——有無(wú)數個(gè)公共點(diǎn).
三種位置關(guān)系的符號表示:aαa∩α=Aa‖α
(9)平面與平面之間的位置關(guān)系:平行——沒(méi)有公共點(diǎn);α‖β
相交——有一條公共直線(xiàn).α∩β=b
2、空間中的平行問(wèn)題
(1)直線(xiàn)與平面平行的判定及其性質(zhì)
線(xiàn)面平行的判定定理:平面外一條直線(xiàn)與此平面內一條直線(xiàn)平行,則該直線(xiàn)與此平面平行.
線(xiàn)線(xiàn)平行線(xiàn)面平行
線(xiàn)面平行的性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,
那么這條直線(xiàn)和交線(xiàn)平行.線(xiàn)面平行線(xiàn)線(xiàn)平行
(2)平面與平面平行的判定及其性質(zhì)
兩個(gè)平面平行的判定定理
1)如果一個(gè)平面內的兩條相交直線(xiàn)都平行于另一個(gè)平面,那么這兩個(gè)平面平行
(線(xiàn)面平行→面面平行),
(2)如果在兩個(gè)平面內,各有兩組相交直線(xiàn)對應平行,那么這兩個(gè)平面平行.
(線(xiàn)線(xiàn)平行→面面平行),
(3)垂直于同一條直線(xiàn)的兩個(gè)平面平行,
兩個(gè)平面平行的性質(zhì)定理
(1)如果兩個(gè)平面平行,那么某一個(gè)平面內的直線(xiàn)與另一個(gè)平面平行.(面面平行→線(xiàn)面平行)
(2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線(xiàn)平行.(面面平行→線(xiàn)線(xiàn)平行)
3、空間中的垂直問(wèn)題
(1)線(xiàn)線(xiàn)、面面、線(xiàn)面垂直的定義
、賰蓷l異面直線(xiàn)的垂直:如果兩條異面直線(xiàn)所成的角是直角,就說(shuō)這兩條異面直線(xiàn)互相垂直.
、诰(xiàn)面垂直:如果一條直線(xiàn)和一個(gè)平面內的任何一條直線(xiàn)垂直,就說(shuō)這條直線(xiàn)和這個(gè)平面垂直.
、燮矫婧推矫娲怪保喝绻麅蓚(gè)平面相交,所成的二面角(從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直.
(2)垂直關(guān)系的判定和性質(zhì)定理
、倬(xiàn)面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線(xiàn)和一個(gè)平面內的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直這個(gè)平面.
性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行.
、诿婷娲怪钡呐卸ǘɡ砗托再|(zhì)定理
判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線(xiàn),那么這兩個(gè)平面互相垂直.
性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內垂直于他們的交線(xiàn)的直線(xiàn)垂直于另一個(gè)平面.
4、空間角問(wèn)題
(1)直線(xiàn)與直線(xiàn)所成的角
、賰善叫兄本(xiàn)所成的角:規定為.
、趦蓷l相交直線(xiàn)所成的角:兩條直線(xiàn)相交其中不大于直角的角,叫這兩條直線(xiàn)所成的角.
、蹆蓷l異面直線(xiàn)所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線(xiàn)a,b平行的直線(xiàn),形成兩條相交直線(xiàn),這兩條相交直線(xiàn)所成的不大于直角的角叫做兩條異面直線(xiàn)所成的角.
(2)直線(xiàn)和平面所成的角
、倨矫娴钠叫芯(xiàn)與平面所成的角:規定為.②平面的垂線(xiàn)與平面所成的角:規定為.
、燮矫娴男本(xiàn)與平面所成的角:平面的一條斜線(xiàn)和它在平面內的射影所成的銳角,叫做這條直線(xiàn)和這個(gè)平面所成的角.
求斜線(xiàn)與平面所成角的思路類(lèi)似于求異面直線(xiàn)所成角:“一作,二證,三計算”.
在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線(xiàn)上一點(diǎn)到面的垂線(xiàn),
在解題時(shí),注意挖掘題設中兩個(gè)主要信息:(1)斜線(xiàn)上一點(diǎn)到面的垂線(xiàn);(2)過(guò)斜線(xiàn)上的一點(diǎn)或過(guò)斜線(xiàn)的平面與已知面垂直,由面面垂直性質(zhì)易得垂線(xiàn).
3)二面角和二面角的平面角
、俣娼堑亩x:從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線(xiàn)叫做二面角的棱,這兩個(gè)半平面叫做二面角的面.
、诙娼堑钠矫娼牵阂远娼堑睦馍先我庖稽c(diǎn)為頂點(diǎn),在兩個(gè)面內分別作垂直于棱的兩條射線(xiàn),這兩條射線(xiàn)所成的角叫二面角的平面角.
、壑倍娼牵浩矫娼鞘侵苯堑亩娼墙兄倍娼.
兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角
、芮蠖娼堑姆椒
定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內作垂直于棱的射線(xiàn)得到平面角
垂面法:已知二面角內一點(diǎn)到兩個(gè)面的垂線(xiàn)時(shí),過(guò)兩垂線(xiàn)作平面與兩個(gè)面的交線(xiàn)所成的角為二面角的平面角。
最新高考資訊、高考政策、考前準備、高考預測、志愿填報、錄取分數線(xiàn)等
高考時(shí)間線(xiàn)的全部重要節點(diǎn)
盡在"高考網(wǎng)"微信公眾號