高中數學(xué)必修一函數的定義域知識點(diǎn)
2019-01-23 18:57:34三好網(wǎng)
高中數學(xué)函數的概念定義域
。ǜ咧泻瘮刀x)設A,B是兩個(gè)非空的數集,如果按某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱(chēng)f:A--B為集合A到集合B的一個(gè)函數,記作y=f(x),x屬于集合A。其中,x叫作自變量,x的取值范圍A叫作函數的定義域;
高一數學(xué)知識點(diǎn)總結值域
名稱(chēng)定義
函數中,應變量的取值范圍叫做這個(gè)函數的值域函數的值域,在數學(xué)中是函數在定義域中應變量所有值的集合
高一數學(xué)知識點(diǎn)總結常用的求值域的方法
。1)化歸法;(2)圖象法(數形結合),
。3)函數單調性法,
。4)配方法,(5)換元法,(6)反函數法(逆求法),(7)判別式法,(8)復合函數法,(9)三角代換法,(10)基本不等式法等
高一數學(xué)知識點(diǎn)總結關(guān)于函數值域誤區
定義域、對應法則、值域是函數構造的三個(gè)基本“元件”。平時(shí)數學(xué)中,實(shí)行“定義域優(yōu)先”的原則,無(wú)可置疑。然而事物均具有二重性,在強化定義域問(wèn)題的同時(shí),往往就削弱或談化了,對值域問(wèn)題的探究,造成了一手“硬”一手“軟”,使學(xué)生對函數的掌握時(shí)好時(shí)壞,事實(shí)上,定義域與值域二者的位置是相當的,絕不能厚此薄皮,何況它們二者隨時(shí)處于互相轉化之中(典型的例子是互為反函數定義域與值域的相互轉化)。如果函數的值域是無(wú)限集的話(huà),那么求函數值域不總是容易的,反靠不等式的運算性質(zhì)有時(shí)并不能奏效,還必須聯(lián)系函數的奇偶性、單調性、有界性、周期性來(lái)考慮函數的取值情況。才能獲得正確答案,從這個(gè)角度來(lái)講,求值域的問(wèn)題有時(shí)比求定義域問(wèn)題難,實(shí)踐證明,如果加強了對值域求法的研究和討論,有利于對定義域內函的理解,從而深化對函數本質(zhì)的認識。
高一數學(xué)知識點(diǎn)總結“范圍”與“值域”相同嗎?
“范圍”與“值域”是我們在學(xué)習中經(jīng)常遇到的兩個(gè)概念,許多同學(xué)常常將它們混為一談,實(shí)際上這是兩個(gè)不同的概念。“值域”是所有函數值的集合(即集合中每一個(gè)元素都是這個(gè)函數的取值),而“范圍”則只是滿(mǎn)足某個(gè)條件的一些值所在的集合(即集合中的元素不一定都滿(mǎn)足這個(gè)條件)。也就是說(shuō):“值域”是一個(gè)“范圍”,而“范圍”卻不一定是“值域”。