全國

熱門(mén)城市 | 全國 北京 上海 廣東

華北地區 | 北京 天津 河北 山西 內蒙古

東北地區 | 遼寧 吉林 黑龍江

華東地區 | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區 | 河南 湖北 湖南

西南地區 | 重慶 四川 貴州 云南 西藏

西北地區 | 陜西 甘肅 青海 寧夏 新疆

華南地區 | 廣東 廣西 海南

  • 微 信
    高考

    關(guān)注高考網(wǎng)公眾號

    (www_gaokao_com)
    了解更多高考資訊

首頁(yè) > 高考總復習 > 高考數學(xué)復習方法 > 高考必備的數學(xué)知識點(diǎn)總結

高考必備的數學(xué)知識點(diǎn)總結

2019-04-08 09:05:33本站原創(chuàng )

  高考數學(xué)基礎知識

  函數的圖象

  函數的圖象是函數的直觀(guān)體現,應加強對作圖、識圖、用圖能力的培養,培養用數形結合的思想方法解決問(wèn)題的意識.

  求作圖象的函數表達式

  與f(x)的關(guān)系

  由f(x)的圖象需經(jīng)過(guò)的變換

  y=f(x)±b(b>0)

  沿y軸向平移b個(gè)單位

  y=f(x±a)(a>0)

  沿x軸向平移a個(gè)單位

  y=-f(x)

  作關(guān)于x軸的對稱(chēng)圖形

  y=f(|x|)

  右不動(dòng)、左右關(guān)于y軸對稱(chēng)

  y=|f(x)|

  上不動(dòng)、下沿x軸翻折

  y=f-1(x)

  作關(guān)于直線(xiàn)y=x的對稱(chēng)圖形

  y=f(ax)(a>0)

  橫坐標縮短到原來(lái)的,縱坐標不變

  y=af(x)

  縱坐標伸長(cháng)到原來(lái)的|a|倍,橫坐標不變

  y=f(-x)

  作關(guān)于y軸對稱(chēng)的圖形

  高考數學(xué)知識口訣

  【三角函數】

  三角函數是函數,象限符號坐標注。

  函數圖象單位圓,周期奇偶增減現。

  同角關(guān)系很重要,化簡(jiǎn)證明都需要。

  正六邊形頂點(diǎn)處,從上到下弦切割;

  中心記上數字1,連結頂點(diǎn)三角形;

  向下三角平方和,倒數關(guān)系是對角,

  頂點(diǎn)任意一函數,等于后面兩根除。

  誘導公式就是好,負化正后大化小,

  變成稅角好查表,化簡(jiǎn)證明少不了。

  二的一半整數倍,奇數化余偶不變,

  將其后者視銳角,符號原來(lái)函數判。

  兩角和的余弦值,化為單角好求值,

  余弦積減正弦積,換角變形眾公式。

  和差化積須同名,互余角度變名稱(chēng)。

  計算證明角先行,注意結構函數名,

  保持基本量不變,繁難向著(zhù)簡(jiǎn)易變。

  逆反原則作指導,升冪降次和差積。

  條件等式的證明,方程思想指路明。

  萬(wàn)能公式不一般,化為有理式居先。

  公式順用和逆用,變形運用加巧用;

  1加余弦想余弦,1 減余弦想正弦,

  冪升一次角減半,升冪降次它為范;

  三角函數反函數,實(shí)質(zhì)就是求角度,

  先求三角函數值,再判角取值范圍;

  利用直角三角形,形象直觀(guān)好換名,

  簡(jiǎn)單三角的方程,化為最簡(jiǎn)求解集;

  【不等式】

  解不等式的途徑,利用函數的性質(zhì)。

  對指無(wú)理不等式,化為有理不等式。

  高次向著(zhù)低次代,步步轉化要等價(jià)。

  數形之間互轉化,幫助解答作用大。

  證不等式的方法,實(shí)數性質(zhì)威力大。

  求差與0比大小,作商和1爭高下。

  直接困難分析好,思路清晰綜合法。

  非負常用基本式,正面難則反證法。

  還有重要不等式,以及數學(xué)歸納法。

  圖形函數來(lái)幫助,畫(huà)圖建模構造法。

  高考數學(xué)知識重點(diǎn)

  (一)、映射、函數、反函數

  1、對應、映射、函數三個(gè)概念既有共性又有區別,映射是一種特殊的對應,而函數又是一種特殊的映射.

  2、對于函數的概念,應注意如下幾點(diǎn):

  (1)掌握構成函數的三要素,會(huì )判斷兩個(gè)函數是否為同一函數.

  (2)掌握三種表示法——列表法、解析法、圖象法,能根實(shí)際問(wèn)題尋求變量間的函數關(guān)系式,特別是會(huì )求分段函數的解析式.

  (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復合函數,其中g(shù)(x)為內函數,f(u)為外函數.

  3、求函數y=f(x)的反函數的一般步驟:

  (1)確定原函數的值域,也就是反函數的定義域;

  (2)由y=f(x)的解析式求出x=f-1(y);

  (3)將x,y對換,得反函數的習慣表達式y=f-1(x),并注明定義域.

  注意①:對于分段函數的反函數,先分別求出在各段上的反函數,然后再合并到一起.

 、谑煜さ膽,求f-1(x0)的值,合理利用這個(gè)結論,可以避免求反函數的過(guò)程,從而簡(jiǎn)化運算.

  (二)、函數的解析式與定義域

  1、函數及其定義域是不可分割的整體,沒(méi)有定義域的函數是不存在的,因此,要正確地寫(xiě)出函數的解析式,必須是在求出變量間的對應法則的同時(shí),求出函數的定義域.求函數的定義域一般有三種類(lèi)型:

  (1)有時(shí)一個(gè)函數來(lái)自于一個(gè)實(shí)際問(wèn)題,這時(shí)自變量x有實(shí)際意義,求定義域要結合實(shí)際意義考慮;   (2)已知一個(gè)函數的解析式求其定義域,只要使解析式有意義即可.如:

 、俜质降姆帜覆坏脼榱;

 、谂即畏礁谋婚_(kāi)方數不小于零;

 、蹖岛瘮档恼鏀当仨毚笥诹;

 、苤笖岛瘮岛蛯岛瘮档牡讛当仨毚笥诹闱也坏扔1;

 、萑呛瘮抵械恼泻瘮祔=tanx(x∈R,且k∈Z),余切函數y=cotx(x∈R,x≠kπ,k∈Z)等.

  應注意,一個(gè)函數的解析式由幾部分組成時(shí),定義域為各部分有意義的自變量取值的公共部分(即交集).

  (3)已知一個(gè)函數的定義域,求另一個(gè)函數的定義域,主要考慮定義域的深刻含義即可.

  已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿(mǎn)足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時(shí)f(x)的定義域,即g(x)的值域.

  2、求函數的解析式一般有四種情況

  (1)根據某實(shí)際問(wèn)題需建立一種函數關(guān)系時(shí),必須引入合適的變量,根據數學(xué)的有關(guān)知識尋求函數的解析式.

  (2)有時(shí)題設給出函數特征,求函數的解析式,可采用待定系數法.比如函數是一次函數,可設f(x)=ax+b(a≠0),其中a,b為待定系數,根據題設條件,列出方程組,求出a,b即可.

  (3)若題設給出復合函數f[g(x)]的表達式時(shí),可用換元法求函數f(x)的表達式,這時(shí)必須求出g(x)的值域,這相當于求函數的定義域.

  (4)若已知f(x)滿(mǎn)足某個(gè)等式,這個(gè)等式除f(x)是未知量外,還出現其他未知量(如f(-x),等),必須根據已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表達式.

[標簽:高考資訊 復習指導]

分享:

高考院校庫(挑大學(xué)·選專(zhuān)業(yè),一步到位。

高考院校庫(挑大學(xué)·選專(zhuān)業(yè),一步到位。

高校分數線(xiàn)

專(zhuān)業(yè)分數線(xiàn)

日期查詢(xún)
  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:gaokao_com

  • 👇掃描免費領(lǐng)
    近十年高考真題匯總
    備考、選科和專(zhuān)業(yè)解讀
    關(guān)注高考網(wǎng)官方服務(wù)號


日本一道免费7788www_国产香蕉尹人综合在线观看_天天看视频专区一区二区素人_日本Aⅴ大伊香蕉精品视频