高一數學(xué)教案:《等比數列》教學(xué)設計
來(lái)源:網(wǎng)絡(luò )整理 2018-11-21 19:04:19
高一數學(xué)教案:《等比數列》教學(xué)設計
教學(xué)目標
1.理解等比數列的概念,掌握等比數列的通項公式,并能運用公式解決簡(jiǎn)單的問(wèn)題.
。1)正確理解等比數列的定義,了解公比的概念,明確一個(gè)數列是等比數列的限定條件,能根據定義判斷一個(gè)數列是等比數列,了解等比中項的概念;
。2)正確認識使用等比數列的表示法,能靈活運用通項公式求等比數列的首項、公比、項數及指定的項;
。3)通過(guò)通項公式認識等比數列的性質(zhì),能解決某些實(shí)際問(wèn)題.
2.通過(guò)對等比數列的研究,逐步培養學(xué)生觀(guān)察、類(lèi)比、歸納、猜想等思維品質(zhì).
3.通過(guò)對等比數列概念的歸納,進(jìn)一步培養學(xué)生嚴密的思維習慣,以及實(shí)事求是的科學(xué)態(tài)度.
教學(xué)建議
教材分析
。1)知識結構
等比數列是另一個(gè)簡(jiǎn)單常見(jiàn)的數列,研究?jì)热菘膳c等差數列類(lèi)比,首先歸納出等比數列的定義,導出通項公式,進(jìn)而研究圖像,又給出等比中項的概念,最后是通項公式的應用.
。2)重點(diǎn)、難點(diǎn)分析
教學(xué)重點(diǎn)是等比數列的定義和對通項公式的認識與應用,教學(xué)難點(diǎn)在于等比數列通項公式的推導和運用.
、倥c等差數列一樣,等比數列也是特殊的數列,二者有許多相同的性質(zhì),但也有明顯的區別,可根據定義與通項公式得出等比數列的特性,這些是教學(xué)的重點(diǎn).
、陔m然在等差數列的學(xué)習中曾接觸過(guò)不完全歸納法,但對學(xué)生來(lái)說(shuō)仍然不熟悉;在推導過(guò)程中,需要學(xué)生有一定的觀(guān)察分析猜想能力;第一項是否成立又須補充說(shuō)明,所以通項公式的推導是難點(diǎn).
、蹖Φ炔顢盗、等比數列的綜合研究離不開(kāi)通項公式,因而通項公式的靈活運用既是重點(diǎn)又是難點(diǎn).
教學(xué)建議
。1)建議本節課分兩課時(shí),一節課為等比數列的概念,一節課為等比數列通項公式的應用.
。2)等比數列概念的引入,可給出幾個(gè)具體的例子,由學(xué)生概括這些數列的相同特征,從而得到等比數列的定義.也可將幾個(gè)等差數列和幾個(gè)等比數列混在一起給出,由學(xué)生將這些數列進(jìn)行分類(lèi),有一種是按等差、等比來(lái)分的,由此對比地概括等比數列的定義.
。3)根據定義讓學(xué)生分析等比數列的公比不為0,以及每一項均不為0的特性,加深對概念的理解.
。4)對比等差數列的表示法,由學(xué)生歸納等比數列的各種表示法. 啟發(fā)學(xué)生用函數觀(guān)點(diǎn)認識通項公式,由通項公式的結構特征畫(huà)數列的圖象.
。5)由于有了等差數列的研究經(jīng)驗,等比數列的研究完全可以放手讓學(xué)生自己解決,教師只需把握課堂的節奏,作為一節課的組織者出現.
。6)可讓學(xué)生相互出題,解題,講題,充分發(fā)揮學(xué)生的主體作用.
教學(xué)設計示例
課題:等比數列的概念
教學(xué)目標
1.通過(guò)教學(xué)使學(xué)生理解等比數列的概念,推導并掌握通項公式.
2.使學(xué)生進(jìn)一步體會(huì )類(lèi)比、歸納的思想,培養學(xué)生的觀(guān)察、概括能力.
3.培養學(xué)生勤于思考,實(shí)事求是的精神,及嚴謹的科學(xué)態(tài)度.
教學(xué)重點(diǎn),難點(diǎn)
重點(diǎn)、難點(diǎn)是等比數列的定義的歸納及通項公式的推導.
教學(xué)用具
投影儀,多媒體軟件,電腦.
教學(xué)方法
討論、談話(huà)法.
教學(xué)過(guò)程
一、提出問(wèn)題
給出以下幾組數列,將它們分類(lèi),說(shuō)出分類(lèi)標準.(幻燈片)
、伲2,1,4,7,10,13,16,19,…
、8,16,32,64,128,256,…
、1,1,1,1,1,1,1,…
相關(guān)推薦
高考院校庫(挑大學(xué)·選專(zhuān)業(yè),一步到位。
高校分數線(xiàn)
專(zhuān)業(yè)分數線(xiàn)
- 日期查詢(xún)