高中數學(xué)必修一總結
2019-01-30 19:11:05三好網(wǎng)
1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素。
2、集合的中元素的三個(gè)特性:
1.元素的確定性;2.元素的互異性;3.元素的無(wú)序性
說(shuō)明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素。
(2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素。
(3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2.集合的表示方法:列舉法與描述法。
注意。撼S脭导捌溆浄ǎ
非負整數集(即自然數集)記作:N
正整數集N*或N+整數集Z有理數集Q實(shí)數集R
關(guān)于“屬于”的概念
集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A
列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號括上。
描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個(gè)集合的方法。
、僬Z(yǔ)言描述法:例:{不是直角三角形的三角形}
、跀祵W(xué)式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
4、集合的分類(lèi):
1.有限集含有有限個(gè)元素的集合
2.無(wú)限集含有無(wú)限個(gè)元素的集合
3.空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系(5≥5,且5≤5,則5=5)
實(shí)例:設A={x|x2-1=0}B={-1,1}“元素相同”
結論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B
、偃魏我粋(gè)集合是它本身的子集。AíA
、谡孀蛹:如果AíB,且A1B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄íB,BíC,那么AíC
、苋绻鸄íB同時(shí)BíA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的運算
1.交集的定義:一般地,由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集.
記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.
2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.
3、交集與并集的性質(zhì):A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,
A∪φ=A,A∪B=B∪A.
4、全集與補集
(1)補集:設S是一個(gè)集合,A是S的一個(gè)子集(即),由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)
記作:CSA即CSA={x|x?S且x?A}
S
CsA
A
(2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來(lái)表示。
(3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U
二、函數的有關(guān)概念
1.函數的概念:設A、B是非空的數集,如果按照某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數.記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域.
注意:2如果只給出解析式y=f(x),而沒(méi)有指明它的定義域,則函數的定義域即是指能使這個(gè)式子有意義的實(shí)數的集合;3函數的定義域、值域要寫(xiě)成集合或區間的形式.
定義域補充
能使函數式有意義的實(shí)數x的集合稱(chēng)為函數的定義域,求函數的定義域時(shí)列不等式組的主要依據是:(1)分式的分母不等于零;(2)偶次方根的被開(kāi)方數不小于零;(3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1.(5)如果函數是由一些基本函數通過(guò)四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零(6)實(shí)際問(wèn)題中的函數的定義域還要保證實(shí)際問(wèn)題有意義.
(又注意:求出不等式組的解集即為函數的定義域。)
構成函數的三要素:定義域、對應關(guān)系和值域
再注意:(1)構成函數三個(gè)要素是定義域、對應關(guān)系和值域.由于值域是由定義域和對應關(guān)系決定的,所以,如果兩個(gè)函數的定義域和對應關(guān)系完全一致,即稱(chēng)這兩個(gè)函數相等(或為同一函數)(2)兩個(gè)函數相等當且僅當它們的定義域和對應關(guān)系完全一致,而與表示自變量和函數值的字母無(wú)關(guān)。相同函數的判斷方法:①表達式相同;②定義域一致(兩點(diǎn)必須同時(shí)具備)
(見(jiàn)課本21頁(yè)相關(guān)例2)
值域補充
(1)、函數的值域取決于定義域和對應法則,不論采取什么方法求函數的值域都應先考慮其定義域.(2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。
3.函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點(diǎn)P(x,y)的集合C,叫做函數y=f(x),(x∈A)的圖象.
C上每一點(diǎn)的坐標(x,y)均滿(mǎn)足函數關(guān)系y=f(x),反過(guò)來(lái),以滿(mǎn)足y=f(x)的每一組有序實(shí)數對x、y為坐標的點(diǎn)(x,y),均在C上.即記為C={P(x,y)|y=f(x),x∈A}
圖象C一般的是一條光滑的連續曲線(xiàn)(或直線(xiàn)),也可能是由與任意平行與Y軸的直線(xiàn)最多只有一個(gè)交點(diǎn)的若干條曲線(xiàn)或離散點(diǎn)組成。
(2)畫(huà)法
A、描點(diǎn)法:根據函數解析式和定義域,求出x,y的一些對應值并列表,以(x,y)為坐標在坐標系內描出相應的點(diǎn)P(x,y),最后用平滑的曲線(xiàn)將這些點(diǎn)連接起來(lái).
B、圖象變換法(請參考必修4三角函數)
高一數學(xué)必修1常用變換方法有三種,即平移變換、伸縮變換和對稱(chēng)變換
(3)作用:
1、直觀(guān)的看出函數的性質(zhì);2、利用數形結合的方法分析解題的思路。提高解題的速度。
發(fā)現解題中的錯誤。
4.快去了解區間的概念
(1)區間的分類(lèi):開(kāi)區間、閉區間、半開(kāi)半閉區間;(2)無(wú)窮區間;(3)區間的數軸表示.
5.什么叫做映射
一般地,設A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應法則f,使對于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱(chēng)對應f:AB為從集合A到集合B的一個(gè)映射。記作“f:AB”
給定一個(gè)集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象
說(shuō)明:函數是一種特殊的映射,映射是一種特殊的對應,①集合A、B及對應法則f是確定的;②對應法則有“方向性”,即強調從集合A到集合B的對應,它與從B到A的對應關(guān)系一般是不同的;③對于映射f:A→B來(lái)說(shuō),則應滿(mǎn)足:(Ⅰ)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個(gè);(Ⅲ)不要求集合B中的每一個(gè)元素在集合A中都有原象。
常用的函數表示法及各自的優(yōu)點(diǎn):
1函數圖象既可以是連續的曲線(xiàn),也可以是直線(xiàn)、折線(xiàn)、離散的點(diǎn)等等,注意判斷一個(gè)圖形是否是函數圖象的依據;2解析法:必須注明函數的定義域;3圖象法:描點(diǎn)法作圖要注意:確定函數的定義域;化簡(jiǎn)函數的解析式;觀(guān)察函數的特征;4列表法:選取的自變量要有代表性,應能反映定義域的特征.
注意。航馕龇ǎ罕阌谒愠龊瘮抵。列表法:便于查出函數值。圖象法:便于量出函數值
補充一:分段函數(參見(jiàn)課本P24-25)
在定義域的不同部分上有不同的解析表達式的函數。在不同的范圍里求函數值時(shí)必須把自變量代入相應的表達式。分段函數的解析式不能寫(xiě)成幾個(gè)不同的方程,而就寫(xiě)函數值幾種不同的表達式并用一個(gè)左大括號括起來(lái),并分別注明各部分的自變量的取值情況.(1)分段函數是一個(gè)函數,不要把它誤認為是幾個(gè)函數;(2)分段函數的定義域是各段定義域的并集,值域是各段值域的并集.
補充二:復合函數
如果y=f(u),(u∈M),u=g(x),(x∈A),則y=f[g(x)]=F(x),(x∈A)稱(chēng)為f、g的復合函數。
例如:y=2sinXy=2cos(X2+1)
7.函數單調性
(1).增函數
設函數y=f(x)的定義域為I,如果對于定義域I內的某個(gè)區間D內的任意兩個(gè)自變量x1,x2,當x1
如果對于區間D上的任意兩個(gè)自變量的值x1,x2,當x1
注意:1函數的單調性是在定義域內的某個(gè)區間上的性質(zhì),是函數的局部性質(zhì);
2必須是對于區間D內的任意兩個(gè)自變量x1,x2;當x1
(2)圖象的特點(diǎn)
如果函數y=f(x)在某個(gè)區間是增函數或減函數,那么說(shuō)函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3).函數單調區間與單調性的判定方法
(A)定義法:
1任取x1,x2∈D,且x1
(B)圖象法(從圖象上看升降)_
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關(guān),其規律如下:
函數
單調性
u=g(x)
增
增
減
減
y=f(u)
增
減
增
減
y=f[g(x)]
增
減
減
增
注意:1、函數的單調區間只能是其定義域的子區間,不能把單調性相同的區間和在一起寫(xiě)成其并集.2、還記得我們在選修里學(xué)習簡(jiǎn)單易行的導數法判定單調性嗎?
8.函數的奇偶性
(1)偶函數
一般地,對于函數f(x)的定義域內的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數.
(2)奇函數
一般地,對于函數f(x)的定義域內的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.
注意:1函數是奇函數或是偶函數稱(chēng)為函數的奇偶性,函數的奇偶性是函數的整體性質(zhì);函數可能沒(méi)有奇偶性,也可能既是奇函數又是偶函數。
2由函數的奇偶性定義可知,函數具有奇偶性的一個(gè)必要條件是,對于定義域內的任意一個(gè)x,則-x也一定是定義域內的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對稱(chēng)).
(3)具有奇偶性的函數的圖象的特征
偶函數的圖象關(guān)于y軸對稱(chēng);奇函數的圖象關(guān)于原點(diǎn)對稱(chēng).
總結:利用定義判斷函數奇偶性的格式步驟:1首先確定函數的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對稱(chēng);2確定f(-x)與f(x)的關(guān)系;3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.
注意。汉瘮刀x域關(guān)于原點(diǎn)對稱(chēng)是函數具有奇偶性的必要條件.首先看函數的定義域是否關(guān)于原點(diǎn)對稱(chēng),若不對稱(chēng)則函數是非奇非偶函數.若對稱(chēng),(1)再根據定義判定;(2)有時(shí)判定f(-x)=±f(x)比較困難,可考慮根據是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來(lái)判定;(3)利用定理,或借助函數的圖象判定.
9、函數的解析表達式
(1).函數的解析式是函數的一種表示方法,要求兩個(gè)變量之間的函數關(guān)系時(shí),一是要求出它們之間的對應法則,二是要求出函數的定義域.
(2).求函數的解析式的主要方法有:待定系數法、換元法、消參法等,如果已知函數解析式的構造時(shí),可用待定系數法;已知復合函數f[g(x)]的表達式時(shí),可用換元法,這時(shí)要注意元的取值范圍;當已知表達式較簡(jiǎn)單時(shí),也可用湊配法;若已知抽象函數表達式,則常用解方程組消參的方法求出f(x)
10.函數最大(小)值(定義見(jiàn)課本p36頁(yè))
1利用二次函數的性質(zhì)(配方法)求函數的最大(小)值2利用圖象求函數的最大(小)值3利用函數單調性的判斷函數的最大(小)值:如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);
第二章基本初等函數
一、指數函數
(一)指數與指數冪的運算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.
當是奇數時(shí),正數的次方根是一個(gè)正數,負數的次方根是一個(gè)負數.此時(shí),的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開(kāi)方數(radicand).
當是偶數時(shí),正數的次方根有兩個(gè),這兩個(gè)數互為相反數.此時(shí),正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數沒(méi)有偶次方根;0的任何次方根都是0,記作。
注意:當是奇數時(shí),,當是偶數時(shí),
2.分數指數冪
正數的分數指數冪的意義,規定:
0的正分數指數冪等于0,0的負分數指數冪沒(méi)有意義
指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質(zhì)也同樣可以推廣到有理數指數冪.
3.實(shí)數指數冪的運算性質(zhì)
(1)?;
(2);
(3).
(二)指數函數及其性質(zhì)
1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R.
注意:指數函數的底數的取值范圍,底數不能是負數、零和1.
2、指數函數的圖象和性質(zhì)
a>1
0
圖象特征
函數性質(zhì)
向x、y軸正負方向無(wú)限延伸
函數的定義域為R
圖象關(guān)于原點(diǎn)和y軸不對稱(chēng)
非奇非偶函數
函數圖象都在x軸上方
函數的值域為R+
函數圖象都過(guò)定點(diǎn)(0,1)
自左向右看,
圖象逐漸上升
自左向右看,
圖象逐漸下降
增函數
減函數
在第一象限內的圖象縱坐標都大于1
在第一象限內的圖象縱坐標都小于1
在第二象限內的圖象縱坐標都小于1
在第二象限內的圖象縱坐標都大于1
圖象上升趨勢是越來(lái)越陡
圖象上升趨勢是越來(lái)越緩
函數值開(kāi)始增長(cháng)較慢,到了某一值后增長(cháng)速度極快;
函數值開(kāi)始減小極快,到了某一值后減小速度較慢;
注意:利用函數的單調性,結合圖象還可以看出:
(1)在[a,b]上,值域是或;
(2)若,則;取遍所有正數當且僅當;
(3)對于指數函數,總有;
(4)當時(shí),若,則;
二、對數函數
(一)對數
1.對數的概念:一般地,如果,那么數叫做以為底的對數,記作:(—底數,—真數,—對數式)
說(shuō)明:1注意底數的限制,且;
2;
3注意對數的書(shū)寫(xiě)格式.
兩個(gè)重要對數:
1常用對數:以10為底的對數;
2自然對數:以無(wú)理數為底的對數的對數.
對數式與指數式的互化
對數式指數式
對數底數←→冪底數
對數←→指數
真數←→冪
(二)對數的運算性質(zhì)
如果,且,,,那么:
1?+;
2-;
3.
注意:換底公式
(,且;,且;).
利用換底公式推導下面的結論(1);(2).
(二)對數函數
1、對數函數的概念:函數,且叫做對數函數,其中是自變量,函數的定義域是(0,+∞).
注意:1對數函數的定義與指數函數類(lèi)似,都是形式定義,注意辨別。
如:,都不是對數函數,而只能稱(chēng)其為對數型函數.
2對數函數對底數的限制:,且.
2、對數函數的性質(zhì):
a>1
0
圖象特征
函數性質(zhì)
函數圖象都在y軸右側
函數的定義域為(0,+∞)
圖象關(guān)于原點(diǎn)和y軸不對稱(chēng)
非奇非偶函數
向y軸正負方向無(wú)限延伸
函數的值域為R
函數圖象都過(guò)定點(diǎn)(1,0)
自左向右看,
圖象逐漸上升
自左向右看,
圖象逐漸下降
增函數
減函數
第一象限的圖象縱坐標都大于0
第一象限的圖象縱坐標都大于0
第二象限的圖象縱坐標都小于0
第二象限的圖象縱坐標都小于0
(三)冪函數
1、冪函數定義:一般地,形如的函數稱(chēng)為冪函數,其中為常數.
2、冪函數性質(zhì)歸納.
(1)所有的冪函數在(0,+∞)都有定義,并且圖象都過(guò)點(diǎn)(1,1);
(2)時(shí),冪函數的圖象通過(guò)原點(diǎn),并且在區間上是增函數.特別地,當時(shí),冪函數的圖象下凸;當時(shí),冪函數的圖象上凸;
(3)時(shí),冪函數的圖象在區間上是減函數.在第一象限內,當從右邊趨向原點(diǎn)時(shí),圖象在軸右方無(wú)限地逼近軸正半軸,當趨于時(shí),圖象在軸上方無(wú)限地逼近軸正半軸.
第三章函數的應用
一、方程的根與函數的零點(diǎn)
1、函數零點(diǎn)的概念:對于函數,把使成立的實(shí)數叫做函數的零點(diǎn)。
2、函數零點(diǎn)的意義:函數的零點(diǎn)就是方程實(shí)數根,亦即函數的圖象與軸交點(diǎn)的橫坐標。即:
方程有實(shí)數根函數的圖象與軸有交點(diǎn)函數有零點(diǎn).
3、函數零點(diǎn)的求法:
求函數的零點(diǎn):
1(代數法)求方程的實(shí)數根;
2(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn).
4、二次函數的零點(diǎn):
二次函數.
1)△>0,方程有兩不等實(shí)根,二次函數的圖象與軸有兩個(gè)交點(diǎn),二次函數有兩個(gè)零點(diǎn).
2)△=0,方程有兩相等實(shí)根(二重根),二次函數的圖象與軸有一個(gè)交點(diǎn),二次函數有一個(gè)二重零點(diǎn)或二階零點(diǎn).
3)△<0,方程無(wú)實(shí)根,二次函數的圖象與軸無(wú)交點(diǎn),二次函數無(wú)零點(diǎn).