2011年暑假必備寶典之高一數學(xué)知識點(diǎn)總結(4)
2011-07-08 18:52:22高考網(wǎng)整合
8.函數的奇偶性
。1)偶函數
一般地,對于函數f(x)的定義域內的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數.
。2).奇函數
一般地,對于函數f(x)的定義域內的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.
注意:1函數是奇函數或是偶函數稱(chēng)為函數的奇偶性,函數的奇偶性是函數的整體性質(zhì);函數可能沒(méi)有奇偶性,也可能既是奇函數又是偶函數。
2由函數的奇偶性定義可知,函數具有奇偶性的一個(gè)必要條件是,對于定義域內的任意一個(gè)x,則-x也一定是定義域內的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對稱(chēng)).
。3)具有奇偶性的函數的圖象的特征
偶函數的圖象關(guān)于y軸對稱(chēng);奇函數的圖象關(guān)于原點(diǎn)對稱(chēng).
總結:利用定義判斷函數奇偶性的格式步驟:1首先確定函數的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對稱(chēng);2確定f(-x)與f(x)的關(guān)系;3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.
注意。汉瘮刀x域關(guān)于原點(diǎn)對稱(chēng)是函數具有奇偶性的必要條件.首先看函數的定義域是否關(guān)于原點(diǎn)對稱(chēng),若不對稱(chēng)則函數是非奇非偶函數.若對稱(chēng),(1)再根據定義判定;(2)有時(shí)判定f(-x)=±f(x)比較困難,可考慮根據是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來(lái)判定;(3)利用定理,或借助函數的圖象判定.
9、函數的解析表達式
。1).函數的解析式是函數的一種表示方法,要求兩個(gè)變量之間的函數關(guān)系時(shí),一是要求出它們之間的對應法則,二是要求出函數的定義域.
。2).求函數的解析式的主要方法有:待定系數法、換元法、消參法等,如果已知函數解析式的構造時(shí),可用待定系數法;已知復合函數f[g(x)]的表達式時(shí),可用換元法,這時(shí)要注意元的取值范圍;當已知表達式較簡(jiǎn)單時(shí),也可用湊配法;若已知抽象函數表達式,則常用解方程組消參的方法求出f(x)
10.函數最大(。┲担ǘx見(jiàn)課本p36頁(yè))
1利用二次函數的性質(zhì)(配方法)求函數的最大(。┲2利用圖象求函數的最大(。┲3利用函數單調性的判斷函數的最大(。┲担喝绻瘮祔=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);
第二章基本初等函數
一、指數函數
。ㄒ唬┲笖蹬c指數冪的運算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.
當是奇數時(shí),正數的次方根是一個(gè)正數,負數的次方根是一個(gè)負數.此時(shí),的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開(kāi)方數(radicand).
當是偶數時(shí),正數的次方根有兩個(gè),這兩個(gè)數互為相反數.此時(shí),正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數沒(méi)有偶次方根;0的任何次方根都是0,記作。
注意:當是奇數時(shí),,當是偶數時(shí),
2.分數指數冪
正數的分數指數冪的意義,規定:
,
0的正分數指數冪等于0,0的負分數指數冪沒(méi)有意義
指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質(zhì)也同樣可以推廣到有理數指數冪.
3.實(shí)數指數冪的運算性質(zhì)
。1)?;
。2);
。3).
。ǘ┲笖岛瘮导捌湫再|(zhì)
1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R.
注意:指數函數的底數的取值范圍,底數不能是負數、零和1.