高三數學(xué)教案:三角函數九
來(lái)源:網(wǎng)絡(luò )整理 2024-12-08 20:58:51
高三這年,其重要性,是不言而喻的。高考網(wǎng)陸續的整理了一些全國各省市優(yōu)秀教案供廣大考生參考。
一. 教學(xué)內容:
三角函數
二、高考要求
。ㄒ唬├斫馊我饨堑母拍、弧度的意義、正確進(jìn)行弧度與角度的換算;掌握任意角三角函數的定義、會(huì )利用單位圓中的三角函數線(xiàn)表示正弦、余弦、正切。
。ǘ┱莆杖呛瘮倒降倪\用(即同角三角函數基本關(guān)系、誘導公式、和差及倍角公式)
。ㄈ┠苷_運用三角公式進(jìn)行簡(jiǎn)單三角函數式的化簡(jiǎn)、求值和恒等式證明。
。ㄋ模⿻(huì )用單位圓中的三角函數線(xiàn)畫(huà)出正弦函數、正切函數的圖線(xiàn)、并在此基礎上由誘導公式畫(huà)出余弦函數的圖象、會(huì )用“五點(diǎn)法”畫(huà)出正弦函數、余弦函數及Y=Asin(ωx φ)的簡(jiǎn)圖、理解A、ω、 的物理意義。
三、熱點(diǎn)分析
1. 近幾年高考對三角變換的考查要求有所降低,而對本章的內容的考查有逐步加強的趨勢,主要表現在對三角函數的圖象與性質(zhì)的考查上有所加強.
2. 對本章內容一般以選擇、填空題形式進(jìn)行考查,且難度不大,從1993年至20xx年考查的內容看,大致可分為四類(lèi)問(wèn)題:
。1)與三角函數單調性有關(guān)的問(wèn)題;
。2)與三角函數圖象有關(guān)的問(wèn)題;
。3)應用同角變換和誘導公式,求三角函數值及化簡(jiǎn)和等式證明的問(wèn)題;
。4)與周期有關(guān)的問(wèn)題
3. 基本的解題規律為:觀(guān)察差異(或角,或函數,或運算),尋找聯(lián)系(借助于熟知的公式、方法或技巧),分析綜合(由因導果或執果索因),實(shí)現轉化.解題規律:在三角函數求值問(wèn)題中的解題思路,一般是運用基本公式,將未知角變換為已知角求解;在最值問(wèn)題和周期問(wèn)題中,解題思路是合理運用基本公式將表達式轉化為由一個(gè)三角函數表達的形式求解.
4. 立足課本、抓好基礎.從前面敘述可知,我們已經(jīng)看到近幾年高考已逐步拋棄了對復雜三角變換和特殊技巧的考查,而重點(diǎn)轉移到對三角函數的圖象與性質(zhì)的考查,對基礎知識和基本技能的考查上來(lái),所以在復習中首先要打好基礎.在考查利用三角公式進(jìn)行恒等變形的同時(shí),也直接考查了三角函數的性質(zhì)及圖象的變換,可見(jiàn)高考在降低對三角函數恒等變形的要求下,加強了對三角函數性質(zhì)和圖象的考查力度.
四、復習建議
本章內容由于公式多,且習題變換靈活等特點(diǎn),建議同學(xué)們復習本章時(shí)應注意以下幾點(diǎn):
。1)首先對現有公式自己推導一遍,通過(guò)公式推導了解它們的內在聯(lián)系從而培養邏輯推理能力。
。2)對公式要抓住其特點(diǎn)進(jìn)行記憶。有的公式運用一些順口溜進(jìn)行記憶。
。3)三角函數是中學(xué)階段研究的一類(lèi)初等函數。故對三角函數的性質(zhì)研究應結合一般函數研究方法進(jìn)行對比學(xué)習。如定義域、值域、奇偶性、周期性、圖象變換等。通過(guò)與函數這一章的對比學(xué)習,加深對函數性質(zhì)的理解。但又要注意其個(gè)性特點(diǎn),如周期性,通過(guò)對三角函數周期性的復習,類(lèi)比到一般函數的周期性,再結合函數特點(diǎn)的研究類(lèi)比到抽象函數,形成解決問(wèn)題的能力。
。4)由于三角函數是我們研究數學(xué)的一門(mén)基礎工具,近幾年高考往往考查知識網(wǎng)絡(luò )交匯處的知識,故學(xué)習本章時(shí)應注意本章知識與其它章節知識的聯(lián)系。如平面向量、參數方程、換元法、解三角形等。(20xx年高考應用題源于此)
。5)重視數學(xué)思想方法的復習,如前所述本章試題都以選擇、填空題形式出現,因此復習中要重視選擇、填空題的一些特殊解題方法,如數形結合法、代入檢驗法、特殊值法,待定系數法、排除法等.另外對有些具體問(wèn)題還需要掌握和運用一些基本結論.如:關(guān)于對稱(chēng)問(wèn)題,要利用y=sinx的對稱(chēng)軸為x=kπ+(k∈Z),對稱(chēng)中心為(kπ,0),(k∈Z)等基本結論解決問(wèn)題,同時(shí)還要注意對稱(chēng)軸與函數圖象的交點(diǎn)的縱坐標特征.在求三角函數值的問(wèn)題中,要學(xué)會(huì )用勾股數解題的方法,因為高考試題一般不能查表,給出的數都較特殊,因此主動(dòng)發(fā)現和運用勾股數來(lái)解題能起到事半功倍的效果.
。6)加強三角函數應用意識的訓練,1999年高考理科第20題實(shí)質(zhì)是一個(gè)三角問(wèn)題,由于考生對三角函數的概念認識膚淺,不能將以角為自變量的函數迅速與三角函數之間建立聯(lián)系,造成思維障礙,思路受阻.實(shí)際上,三角函數是以角為自變量的函數,也是以實(shí)數為自變量的函數,它產(chǎn)生于生產(chǎn)實(shí)踐,是客觀(guān)實(shí)際的抽象,同時(shí)又廣泛地應用于客觀(guān)實(shí)際,故應培養實(shí)踐第一的.觀(guān)點(diǎn).總之,三角部分的考查保持了內容穩定,難度穩定,題量穩定,題型穩定,考查的重點(diǎn)是三角函數的概念、性質(zhì)和圖象,三角函數的求值問(wèn)題以及三角變換的方法.
。7)變?yōu)橹骶(xiàn)、抓好訓練.變是本章的主題,在三角變換考查中,角的變換,三角函數名的變換,三角函數次數的變換,三角函數式表達形式的變換等比比皆是,在訓練中,強化“變”意識是關(guān)鍵,但題目不可太難,較特殊技巧的題目不做,立足課本,掌握課本中常見(jiàn)問(wèn)題的解法,把課本中習題進(jìn)行歸類(lèi),并進(jìn)行分析比較,尋找解題規律.針對高考中的題目看,還要強化變角訓練,經(jīng)常注意收集角間關(guān)系的觀(guān)察分析方法.另外如何把一個(gè)含有不同名或不同角的三角函數式化為只含有一個(gè)三角函數關(guān)系式的訓練也要加強,這也是高考的重點(diǎn).同時(shí)應掌握三角函數與二次函數相結合的題目.
。8)在復習中,應立足基本公式,在解題時(shí),注意在條件與結論之間建立聯(lián)系,在變形過(guò)程中不斷尋找差異,講究算理,才能立足基礎,發(fā)展能力,適應高考.
在本章內容中,高考試題主要反映在以下三方面:其一是考查三角函數的性質(zhì)及圖象變換,尤其是三角函數的最大值與最小值、周期。多數題型為選擇題或填空題;其次是三角函數式的恒等變形。如運用三角公式進(jìn)行化簡(jiǎn)、求值解決簡(jiǎn)單的綜合題等。除在填空題和選擇題出現外,解答題的中檔題也經(jīng)常出現這方面內容。
另外,還要注意利用三角函數解決一些應用問(wèn)題。
相關(guān)推薦:
最新高考資訊、高考政策、考前準備、志愿填報、錄取分數線(xiàn)等
高考時(shí)間線(xiàn)的全部重要節點(diǎn)
盡在"高考網(wǎng)"微信公眾號