高中數學(xué)誘導公式全集
2019-07-31 11:00:19網(wǎng)絡(luò )資源
常用的誘導公式有以下幾組:
公式一:
設α為任意角,終邊相同的角的同一三角函數的值相等:
sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
tan(2kπ+α)=tanα (k∈Z)
cot(2kπ+α)=cotα (k∈Z)
公式二:
設α為任意角,π+α的三角函數值與α的三角函數值之間的關(guān)系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α與 -α的三角函數值之間的關(guān)系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函數值之間的關(guān)系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函數值之間的關(guān)系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α與α的三角函數值之間的關(guān)系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
注意:在做題時(shí),將a看成銳角來(lái)做會(huì )比較好做。
誘導公式記憶口訣
※規律總結※
上面這些誘導公式可以概括為:
對于π/2*k ±α(k∈Z)的三角函數值,
、佼攌是偶數時(shí),得到α的同名函數值,即函數名不改變;
、诋攌是奇數時(shí),得到α相應的余函數值,即sin→cos;cos→sin;tan→cot,cot→tan.
。ㄆ孀兣疾蛔儯
然后在前面加上把α看成銳角時(shí)原函數值的符號。
。ǚ柨聪笙蓿
例如:
sin(2π-α)=sin(4·π/2-α),k=4為偶數,所以取sinα。
當α是銳角時(shí),2π-α∈(270°,360°),sin(2π-α)<0,符號為“-”。
所以sin(2π-α)=-sinα
上述的記憶口訣是:
奇變偶不變,符號看象限。
公式右邊的符號為把α視為銳角時(shí),角k·360°+α(k∈Z),-α、180°±α,360°-α
所在象限的原三角函數值的符號可記憶
水平誘導名不變;符號看象限。
。
各種三角函數在四個(gè)象限的符號如何判斷,也可以記住口訣“一全正;二正弦(余割);三兩切;四余弦(正割)”.
這十二字口訣的意思就是說(shuō):
第一象限內任何一個(gè)角的四種三角函數值都是“+”;
第二象限內只有正弦是“+”,其余全部是“-”;
第三象限內切函數是“+”,弦函數是“-”;
第四象限內只有余弦是“+”,其余全部是“-”.
上述記憶口訣,一全正,二正弦,三內切,四余弦
。
還有一種按照函數類(lèi)型分象限定正負:
函數類(lèi)型 第一象限 第二象限 第三象限 第四象限
正弦 ...........+............+............—............—........
余弦 ...........+............—............—............+........
正切 ...........+............—............+............—........
余切 ...........+............—............+............—........
同角三角函數基本關(guān)系
同角三角函數的基本關(guān)系式
倒數關(guān)系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的關(guān)系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關(guān)系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數關(guān)系六角形記憶法
六角形記憶法:(參看圖片或參考資料鏈接)
構造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
。1)倒數關(guān)系:對角線(xiàn)上兩個(gè)函數互為倒數;
。2)商數關(guān)系:六邊形任意一頂點(diǎn)上的函數值等于與它相鄰的兩個(gè)頂點(diǎn)上函數值的乘積。
。ㄖ饕莾蓷l虛線(xiàn)兩端的三角函數值的乘積)。由此,可得商數關(guān)系式。
。3)平方關(guān)系:在帶有陰影線(xiàn)的三角形中,上面兩個(gè)頂點(diǎn)上的三角函數值的平方和等于下面頂點(diǎn)上的三角函數值的平方。