高三數學(xué)知識點(diǎn)總結 高中數學(xué)怎樣才能開(kāi)竅
2019-04-25 16:29:56網(wǎng)絡(luò )資源文章作者:高考網(wǎng)整理
高三數學(xué)知識點(diǎn)總結 高中數學(xué)怎樣才能開(kāi)竅
高三數學(xué)是影響成績(jì)非常重要的學(xué)科,想要學(xué)好高三數學(xué),對知識點(diǎn)的總結是非常重要的,高中數學(xué)怎樣才能學(xué)好呢,下面小編為大家分析一下,僅供大家參考。
高三重要知識點(diǎn)總結
1.數列的定義
按一定次序排列的一列數叫做數列,數列中的每一個(gè)數都叫做數列的項.
(1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那么它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.
(2)在數列的定義中并沒(méi)有規定數列中的數必須不同,因此,在同一數列中可以出現多個(gè)相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….
(4)數列的項與它的項數是不同的,數列的項是指這個(gè)數列中的某一個(gè)確定的數,是一個(gè)函數值,也就是相當于f(n),而項數是指這個(gè)數在數列中的位置序號,它是自變量的值,相當于f(n)中的n.
(5)次序對于數列來(lái)講是十分重要的,有幾個(gè)相同的數,由于它們的排列次序不同,構成的數列就不是一個(gè)相同的數列,顯然數列與數集有本質(zhì)的區別.如:2,3,4,5,6這5個(gè)數按不同的次序排列時(shí),就會(huì )得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個(gè)集合.
2.數列的分類(lèi)
(1)根據數列的項數多少可以對數列進(jìn)行分類(lèi),分為有窮數列和無(wú)窮數列.在寫(xiě)數列時(shí),對于有窮數列,要把末項寫(xiě)出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫(xiě)成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無(wú)窮數列.
(2)按照項與項之間的大小關(guān)系或數列的增減性可以分為以下幾類(lèi):遞增數列、遞減數列、擺動(dòng)數列、常數列.
3.數列的通項公式
數列是按一定次序排列的一列數,其內涵的本質(zhì)屬性是確定這一列數的規律,這個(gè)規律通常是用式子f(n)來(lái)表示的,
這兩個(gè)通項公式形式上雖然不同,但表示同一個(gè)數列,正像每個(gè)函數關(guān)系不都能用解析式表達出來(lái)一樣,也不是每個(gè)數列都能寫(xiě)出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是唯一的,僅僅知道一個(gè)數列前面的有限項,無(wú)其他說(shuō)明,數列是不能確定的,通項公式更非唯一.如:數列1,2,3,4,…,
由公式寫(xiě)出的后續項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據數列的構成規律,多觀(guān)察分析,真正找到數列的內在規律,由數列前幾項寫(xiě)出其通項公式,沒(méi)有通用的方法可循.
再強調對于數列通項公式的理解注意以下幾點(diǎn):
(1)數列的通項公式實(shí)際上是一個(gè)以正整數集N*或它的有限子集{1,2,…,n}為定義域的函數的表達式.
(2)如果知道了數列的通項公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個(gè)數列的各項;同時(shí),用數列的通項公式也可判斷某數是否是某數列中的一項,如果是的話(huà),是第幾項.
(3)如所有的函數關(guān)系不一定都有解析式一樣,并不是所有的數列都有通項公式.
如2的不足近似值,精確到1,0.1,0.01,0.001,0.000 1,…所構成的數列1,1.4,1.41,1.414,1.414 2,…就沒(méi)有通項公式.
(4)有的數列的通項公式,形式上不一定是唯一的,正如舉例中的:
(5)有些數列,只給出它的前幾項,并沒(méi)有給出它的構成規律,那么僅由前面幾項歸納出的數列通項公式并不唯一。
高中數學(xué)怎樣才能學(xué)好
先看高中數學(xué)筆記后做作業(yè)。 有的高中學(xué)生感到。數學(xué)老師講過(guò)的,自己已經(jīng)聽(tīng)得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學(xué)生對教師所講的內容的理解,還沒(méi)能達到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關(guān)內容和當天的課堂筆記先看一看。能否堅持如此,常常是好學(xué)生與差學(xué)生的最大區別。尤其練習題不太配套時(shí),作業(yè)中往往沒(méi)有老師剛剛講過(guò)的題目類(lèi)型,因此不能對比消化。如果自己又不注意對此落實(shí),天長(cháng)日久,就會(huì )造成極大損失。
做數學(xué)題之后加強反思。 學(xué)生一定要明確,現在正坐著(zhù)的題,一定不是數學(xué)考試的題目。而是要運用現在正做著(zhù)的題目的解題思路與方法。因此,要把自己做過(guò)的每道題加以反思?偨Y一下自己的收獲。要總結出,這是一道什么內容的題,用的是什么方法。做到知識成片,問(wèn)題成串,日久天長(cháng),構建起一個(gè)內容與方法的科學(xué)的網(wǎng)絡(luò )系統。