高考數學(xué)復習有這些解題思路就夠了!
2019-04-07 10:32:20本站原創(chuàng )
說(shuō)到高考數學(xué),無(wú)論是對于文科生還是理科生都是拿分的關(guān)鍵,也是失分的關(guān)鍵。在掌握好基礎知識之外,做題顯得尤為重要,那么做題時(shí)的解題思路有哪些呢?同時(shí)該注意些什么呢?小編在這里給伙伴們做出了如下的總結......
題前
復習
▼
總結解題思路前,先帶著(zhù)伙伴們復習一下16個(gè)高考數學(xué)必備的知識點(diǎn)......
集合
集合、子集、交集、并集。
函數
映射、函數、函數的單調性、奇偶性。反函數,互為反函數的函數圖像間的關(guān)系。
指數概念、有理數冪的運算、指數函數、對數的運算、對數函數。
數列
等差數列及其通項公式,等差數列前n項和公式。等比數列及其通項公式。等比數列前n項和公式。
三角函數
角的概念,弧度制。任意三角函數、單位圓中三角函數線(xiàn)。三角函數的基本關(guān)系,正弦、余弦的誘導公式。兩角和與差的正弦、余弦、正切、而被角的正弦、余弦、正切。
平面向量
向量的加法與減法,實(shí)數與向量的積。向量的數量積,平面兩點(diǎn)間的距離、平移。
空間向量
空間向量的概念,空間向量的運算
不等式
不等式的基本性質(zhì),不等式的證明,不等式的解法。含絕對值的不等式。
直線(xiàn)與圓的方程
直線(xiàn)的傾斜角和斜率,兩條直線(xiàn)平行與垂直的條件,兩條直線(xiàn)的交角,點(diǎn)到直線(xiàn)的距離。二元一次不等式表示平面區域,曲線(xiàn)與方程的概念、圓的參數方程。
圓錐曲線(xiàn)方程
橢圓及其標準方程,橢圓的簡(jiǎn)單幾何性質(zhì),橢圓的參數方程。
立體幾何
平面及其基本性質(zhì)、平面圖形直觀(guān)圖的畫(huà)法、平行直線(xiàn),直線(xiàn)和平面平行的判定與性質(zhì)。兩個(gè)平面的關(guān)系、空間向量及其加法、減法與數乘。向量在平面內的射影。
排列、組合、二項定理
分類(lèi)計數原理與分布計數原理、排列數公式、組合數公式組合數的兩個(gè)性質(zhì)。二項式定理,二項展開(kāi)式的性質(zhì)。
概率
隨機事件的概率,獨立重復試驗。
概率與統計
抽樣方法、總體分布的估計。
極限
教學(xué)歸納法、數學(xué)歸納法應用。數列的極限,函數的極限,極限的四則運算,函數的連續性
導數
導數的概念、背影。多項式導數的導數、導數的單調性和極值、函數的最大值和最小值。
復數
復數的概念、復數的加法和減法、乘法和除法。數系的擴充。
解題
思路
▼
數學(xué)知識之間都有著(zhù)千絲萬(wàn)縷的聯(lián)系,僅僅想憑著(zhù)對章節的理解就能得到高分的時(shí)代已經(jīng)遠去了。所以考生在解答數學(xué)試題時(shí)要有正確的思路,才能避免錯失分數的機會(huì )。以下是高考數學(xué)解題五大思路,供大家學(xué)習參考。
思路一:函數與方程思想
函數思想是指運用運動(dòng)變化的觀(guān)點(diǎn),分析和研究數學(xué)中的數量關(guān)系,通過(guò)建立函數關(guān)系(或構造函數)運用函數的圖像和性質(zhì)去分析問(wèn)題、轉化問(wèn)題和解決問(wèn)題;方程思想,是從問(wèn)題的數量關(guān)系入手,運用數學(xué)語(yǔ)言將問(wèn)題轉化為方程(方程組)或不等式模型(方程、不等式等)去解決問(wèn)題。利用轉化思想我們還可進(jìn)行函數與方程間的相互轉化。
思路二:數形結合思想
中學(xué)數學(xué)研究的對象可分為兩大部分,一部分是數,一部分是形,但數與形是有聯(lián)系的,這個(gè)聯(lián)系稱(chēng)之為數形結合或形數結合。它既是尋找問(wèn)題解決切入點(diǎn)的“法寶”,又是優(yōu)化解題途徑的“良方”,因此我們在解答數學(xué)題時(shí),能畫(huà)圖的盡量畫(huà)出圖形,以利于正確地理解題意、快速地解決問(wèn)題。
思路三:特殊與一般的思想
用這種思想解選擇題有時(shí)特別有效,這是因為一個(gè)命題在普遍意義上成立時(shí),在其特殊情況下也必然成立,根據這一點(diǎn),我們可以直接確定選擇題中的正確選項。不僅如此,用這種思想方法去探求主觀(guān)題的求解策略,也同樣精彩。
思路四:極限思想解題步驟
極限思想解決問(wèn)題的一般步驟為:(1)對于所求的未知量,先設法構思一個(gè)與它有關(guān)的變量;(2)確認這變量通過(guò)無(wú)限過(guò)程的結果就是所求的未知量;(3)構造函數(數列)并利用極限計算法則得出結果或利用圖形的極限位置直接計算結果。
高考寄語(yǔ)
沒(méi)有目標就沒(méi)有方向,每一個(gè)學(xué)習階段都應該給自己樹(shù)立一個(gè)目標。