高考數學(xué)復習:數學(xué)思想在計數與概率中應用
2008-04-21 09:55:52城市快報
北師大天津附中 潘長(cháng)虹
計數與概率問(wèn)題在近幾年的高考中都加大了考查的力度,每年都以解答題的形式出現。在復習過(guò)程中,由于知識抽象性強,學(xué)習中要注重基礎知識和基本方法,不可過(guò)深,過(guò)難。復習時(shí)可從最基本的公式,定理,題型入手,恰當選取典型例題,構建思維模式,造成思維依托和思維的合理定勢。
另外,要加強數學(xué)思想方法的訓練,這部分所涉及的數學(xué)思想主要有:分類(lèi)討論思想、等價(jià)轉化思想、整體思想、數形結合思想,在概率和概率與統計中又體現了概率思想、統計思想、數學(xué)建模的思想等。在復習中應有意識用數學(xué)思想方法指導解題,不可就題論題,將問(wèn)題孤立,片面強調單一知識和題型。
能力方面主要考查:運算能力、邏輯思維能力、抽象思維能力、分析問(wèn)題和解決實(shí)際問(wèn)題的能力。在高考中本部分以考查實(shí)際問(wèn)題為主,解決它不能機械地套用模式,而要認真分析,抽象出其中的數量關(guān)系,轉化為數學(xué)問(wèn)題,再利用有關(guān)的數學(xué)知識加以解決。
例1. 一次擲兩顆骰子,求點(diǎn)數和恰為8這一事件A的概率。
分析:這實(shí)際上是一個(gè)等可能事件的概率。擲兩個(gè)骰子出現的基本結果如下表:
解:表中基本結果36個(gè),而點(diǎn)數為8的有5個(gè),故:P(A)=-
評述:本題可歸結為擲骰子問(wèn)題,通過(guò)對擲骰子情況的研究得出各種概率數學(xué)模型,體現了數學(xué)建模的思想:
(1)、投擲一顆均勻的骰子,研究出現各種點(diǎn)的情況,這是等可能事件的概率,各點(diǎn)出現的概率為1/6。
(2)、同時(shí)投擲兩顆均勻的骰子,研究出現各種點(diǎn)的情況,可列一表格或用坐標系表示。
(3)、同時(shí)投擲n顆均勻的骰子,研究出現各種點(diǎn)的情況,可看作n次獨立事件的概率。
例2.同時(shí)擲四枚均勻硬幣,求:
(1)恰有兩枚正面朝上的概率;
(2)至少有兩枚正面朝上的概率。
分析:因同時(shí)拋擲四枚硬幣,可認為四次獨立重復試驗。
解: (1)問(wèn)中可看作“4次重復試驗中,恰有2次發(fā)生”的概率:
∴P4(2)=C42(-)2·(1--)2=-=-
(2)問(wèn)中,可考慮對立事件“至多有一枚正面朝上”
故P=1-P4(0)-P4(1)=1-C40(-)0(1--)4-C41(-)1(1--)3=-
評述:研究各種擲硬幣的情況,抽象出其數學(xué)本質(zhì),再利用概率知識解決,這就是數學(xué)建模的過(guò)程。這一問(wèn)題可推廣到n枚均勻硬幣同時(shí)投擲的情況。