全國

熱門(mén)城市 | 全國 北京 上海 廣東

華北地區 | 北京 天津 河北 山西 內蒙古

東北地區 | 遼寧 吉林 黑龍江

華東地區 | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區 | 河南 湖北 湖南

西南地區 | 重慶 四川 貴州 云南 西藏

西北地區 | 陜西 甘肅 青海 寧夏 新疆

華南地區 | 廣東 廣西 海南

  • 微 信
    高考

    關(guān)注高考網(wǎng)公眾號

    (www_gaokao_com)
    了解更多高考資訊

您現在的位置:首頁(yè) > 高考資源網(wǎng) > 高中教案 > 高二數學(xué)教案 > 高二數學(xué)教案:《導數的幾何意義》教學(xué)設計(2)

電子課本

高考真題

高考模擬題

高中試卷

高中課件

高中教案

高二數學(xué)教案:《導數的幾何意義》教學(xué)設計(2)

來(lái)源:網(wǎng)絡(luò )整理 2018-11-21 16:18:08


  導數的幾何意義教案

  追問(wèn):怎樣確定曲線(xiàn)C在點(diǎn)P的切線(xiàn)呢?因為P是給定的,根據平面解析幾何中直線(xiàn)的點(diǎn)斜式方程的知識,只要求出切線(xiàn)的斜率就夠了.設割線(xiàn)PQ的傾斜角為導數的幾何意義教案,切線(xiàn)PT的傾斜角為導數的幾何意義教案,易知割線(xiàn)PQ的斜率為導數的幾何意義教案。既然割線(xiàn)PQ的極限位置上的直線(xiàn)PT是切線(xiàn),所以割線(xiàn)PQ斜率的極限就是切線(xiàn)PT的斜率導數的幾何意義教案,即導數的幾何意義教案。

  由導數的定義知導數的幾何意義教案  導數的幾何意義教案。

  導數的幾何意義教案

  由上式可知:曲線(xiàn)f(x)在點(diǎn)(x0,f(x0))處的切線(xiàn)的斜率就是y=f(x)在點(diǎn)x0處的導數f'(x0).今天我們就來(lái)探究導數的幾何意義。

 。妙(lèi)學(xué)生回答第1題,A,B類(lèi)學(xué)生回答第2題在學(xué)生回答基礎上教師重點(diǎn)講評第3題,然后逐步引入導數的幾何意義.

  二、新課

  1、導數的幾何意義:

  函數y=f(x)在點(diǎn)x0處的導數f'(x0)的幾何意義,就是曲線(xiàn)y=f(x)在點(diǎn)(x0,f(x0))處切線(xiàn)的斜率.

  即:導數的幾何意義教案

  口答練習:

 。1)如果函數y=f(x)在已知點(diǎn)x0處的導數分別為下列情況f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.試求函數圖像在對應點(diǎn)的切線(xiàn)的傾斜角,并說(shuō)明切線(xiàn)各有什么特征。

 。ǎ脤訉W(xué)生做)

  (2)已知函數y=f(x)的圖象(如圖2-2),分別為以下三種情況的直線(xiàn),通過(guò)觀(guān)察確定函數在各點(diǎn)的導數.(A、B層學(xué)生做)

  導數的幾何意義教案

  2、如何用導數研究函數的增減?

  小結:附近:瞬時(shí),增減:變化率,即研究函數在該點(diǎn)處的瞬時(shí)變化率,也就是導數。導數的正負即對應函數的增減。作出該點(diǎn)處的切線(xiàn),可由切線(xiàn)的升降趨勢,得切線(xiàn)斜率的正負即導數的正負,就可以判斷函數的增減性,體會(huì )導數是研究函數增減、變化快慢的有效工具。

  同時(shí),結合以直代曲的思想,在某點(diǎn)附近的切線(xiàn)的變化情況與曲線(xiàn)的變化情況一樣,也可以判斷函數的增減性。都反應了導數是研究函數增減、變化快慢的有效工具。

  例1  函數導數的幾何意義教案上有一點(diǎn)導數的幾何意義教案,求該點(diǎn)處的導數導數的幾何意義教案,并由此解釋函數的增減情況。

  導數的幾何意義教案

  函數在定義域上任意點(diǎn)處的瞬時(shí)變化率都是3,函數在定義域內單調遞增。(此時(shí)任意點(diǎn)處的切線(xiàn)就是直線(xiàn)本身,斜率就是變化率)

  3、利用導數求曲線(xiàn)y=f(x)在點(diǎn)(x0,f(x0))處的切線(xiàn)方程.

  例2  求曲線(xiàn)y=x2在點(diǎn)M(2,4)處的切線(xiàn)方程.

  解:導數的幾何意義教案

  ∴y'|x=2=2×2=4.

  ∴點(diǎn)M(2,4)處的切線(xiàn)方程為y-4=4(x-2),即4x-y-4=0.

  由上例可歸納出求切線(xiàn)方程的兩個(gè)步驟:

  (1)先求出函數y=f(x)在點(diǎn)x0處的導數f'(x0).

  (2)根據直線(xiàn)方程的點(diǎn)斜式,得切線(xiàn)方程為 y-y0=f'(x0)(x-x0).

  提問(wèn):若在點(diǎn)(x0,f(x0))處切線(xiàn)PT的傾斜角為導數的幾何意義教案導數的幾何意義教案,求切線(xiàn)方程。(因為這時(shí)切線(xiàn)平行于y軸,而導數不存在,不能用上面方法求切線(xiàn)方程。根據切線(xiàn)定義可直接得切線(xiàn)方程導數的幾何意義教案)

  (先由C類(lèi)學(xué)生來(lái)回答,再由A,B補充.)

高考院校庫(挑大學(xué)·選專(zhuān)業(yè),一步到位。

高校分數線(xiàn)

專(zhuān)業(yè)分數線(xiàn)

日期查詢(xún)

京ICP備10033062號-2 北京市公安局海淀分局備案編號:1101081950

違法和不良信息舉報電話(huà):010-56762110     舉報郵箱:wzjubao@tal.com

高考網(wǎng)版權所有 Copyright © 2005-2022 qdxgl.cn . All Rights Reserved

知識商店
日本一道免费7788www_国产香蕉尹人综合在线观看_天天看视频专区一区二区素人_日本Aⅴ大伊香蕉精品视频